
An Analysis of Dependence on Third-party
Libraries in Open Source and Proprietary Systems

Steven Raemaekers⇤†, Arie van Deursen† and Joost Visser⇤

⇤ Software Improvement Group, Amsterdam, The Netherlands
E-mail {s.raemaekers,j.visser}@sig.eu

† Delft University of Technology, Delft, The Netherlands
E-mail {s.b.a.raemaekers, arie.vandeursen}@tudelft.nl

Abstract—The usage of third-party libraries can decrease
development time and cost through reuse of existing pieces of
functionality. However, little is known about the actual usage
of third-party libraries in real-world applications. In this paper,
we investigate the frequency of use of third-party libraries in a
corpus of proprietary and open source systems. This information
is used in a commonality rating, which provides information on
the frequency of use of particular libraries and on the degree of
dependence on third-party libraries in a software system. This
information can be used in the decision to prefer a certain library
over another or to estimate the amount of exposure to possible
risks present in these libraries. In future work, this rating can
be validated against different kinds of risk indicators.

Index Terms—Third-party libraries; Risk management; API
Usage; Software Reuse; Component-based development;

I. INTRODUCTION

The usage of third-party libraries can save development time
and effort by removing the need to rebuild already existing
functionality [2], [7], [9]. According to a survey conducted by
Forrester Consulting [1], software developers have embraced
the use of third-party libraries: nearly all of 336 software
companies in the survey work with some form of third-party
software, and 40% of respondents even work with more than
five third-party library suppliers. For a systematic review of
the advantages of software reuse in general, see [8].

Except for download statistics, which are often available on
the websites of these libraries, little is known about the actual
frequency of use in proprietary and open source systems. We
therefore perform this analysis in this paper and we propose
a ‘commonality’ rating which captures the commonality of
a third-party library in our corpus. The number of third-
party libraries used in a system is also used in this rating
to determine the scale of dependency on third-party libraries,
and to estimate the exposure to possible risks present in these
libraries.

This paper is structured as follows. First, related work will
be discussed in section II. Definitions used in this paper can
be found in section III. We will present our rating in section
IV. We will present the frequencies and the result of our rating
in section IV-D. Finally, we will present ways to validate this

This work was partly funded by the RAAK-PRO project EQuA (Early
Quality Assurance in Software Production) of the Stichting Innovatie Alliantie.

rating and describe an experiment to correlate this rating with
specific risk indicators. This can be found in section VII.

II. RELATED WORK

Considerable research has been performed in the area of
software reuse [4] and component-based development. The
usage of third-party libraries is one form of software reuse,
but the focus of software reuse literature is mostly on how
to design a system in a way that makes reuse of components
possible in general [10], [11]. It is not necessarily concerned
with measurements in individual libraries, while our research
focuses on gathering a specific indicator for a selected set of
third-party libraries.

In the area of component-based development (CBD), re-
search [3], [5] has been performed to help in identifying
suitable components for reuse. Often, a standard set of metrics
that is normally used to measure software quality in general is
applied to components to be marked for reuse. For instance,
Gui [5] focuses on coupling metrics to rank the reusability of
software components. This paper introduces a new measure-
ment which is not included in the standard set of software
quality metrics.

The work of Lämmel [6] is perhaps most closely related
to this study. Lämmel studies API usage in a large set of
systems, but is only concerned with API usage in a set of open
source systems from SourceForge1. Also, no way of rating an
individual library is proposed to use this information.

III. DEFINITIONS

In this paper, we define a third-party library to be a reusable
software component developed to be used by an entity other
than the original developer of the component. Apache log4j
and Apache Commons Collections are typical examples of
third-party libraries. A third-party library can also be seen as
a system which uses other third-party libraries by itself.

Furthermore, we make a distinction between system-
level packages, top-level packages and subpackages.
For instance, in org.apache.tools.ant.task,
org.apache.tools.ant is a system-level package
and task a top-level package. Sub-level packages are all
packages one or multiple levels below top-level packages.

1http://www.sourceforge.net

apple

apple

apple

apple

apple

apple

apple

apple

IV. RATING BASED ON FREQUENCY OF USE

Our proposed rating gives information for third-party li-
braries as well as for systems that use these libraries. To
achieve this, frequencies of use are obtained through the
extraction of import statements from Java files. Table I shows
an overview of the systems included in our dataset.

A. Dataset

Our dataset consists of Java systems and libraries and is
chosen to represent a wide range of business domains and
functions. We use a set of 106 open source systems from the
Qualitas Corpus [12] and a set of 178 proprietary systems of
which source code is available at the Software Improvement
Group (SIG).

Open source systems min p25 p50 p75 p95 max
KLOC 2 22 53 113 438 2283
files 32 201 468 1079 2570 20457
3rd party libs 0 5 9 25 73 232

Proprietary systems min p25 p50 p75 p95 max
KLOC 0.7 28 84 193 1140 4752
files 6 203 652 1256 4042 9597
3rd party libs 0 7 11 23 36 52

TABLE I
DESCRIPTIVE STATISTICS OF INCLUDED SYSTEMS

The Qualitas Corpus is a curated collection of selected
systems, which increases the replicability and comparability
of our study to other studies using the same corpus. The
collection of systems available at the SIG gives invaluable
insight in the usage of third-party libraries in proprietary
systems.

Java was chosen as a language because a large number of
open source and proprietary systems have been written in it.
We also expect that Java systems are representative for systems
written in other object-oriented languages.

B. Obtaining frequency of use

In order to obtain the frequency of use of third-
party libraries, import and package statements are ex-
tracted from our set of systems. All files with a *.java
extension are scanned for import statements (import
<package_name>;) and package declarations (package
<package_name>;). Java files have only one package dec-
laration per file and can have multiple import declarations per
file. For confidentiality reasons, names of commercial systems
cannot be provided in this paper.

The result of this extraction is an unfiltered list of import
statements and package declarations, which are reduced to a
list of libraries as follows. If a package declaration is defined
in a file (trailing class name and trailing .

*

are removed)
and that same package is imported in another file in the
same system, we consider the import to be internal. All other
imports are considered to be external. To reduce the number of
imports to system-level packages we look through the list of
imports per system manually (org.apache.maven.task
and org.apache.maven.plugin result in one third-
party library dependency: org.apache.maven). From this

process, frequencies of imports of libraries are obtained by
aggregating import counts for all files per system. For each
system, each library that is imported is counted only once.

We only analyze library dependencies in non-test code since
these dependencies are needed when the code is actually being
used. Therefore, test code is removed from our analysis. Also,
the number of references to libraries inside test classes is
negligible In the analysis of import statements, references to
libraries starting with java., javax. and sun. are ignored
since we do not classify the base class libraries as third-party.

C. Calculating a rating based on frequency of use

After extraction and processing of import and package
statements, a rating is calculated both for third-party libraries
and systems that use these libraries. Ideally, a rating should
be easy to obtain and should have a desirable statistical
distribution (systems can be discriminated with this metric).
Our rating satisfies these properties since it is relatively simple
to calculate, and given our results in the next section, systems
can be discriminated with it as well.

The rating for a specific library that we propose in this
paper is the number of different systems it is used in divided
by the total number of systems in our dataset. The rating for
a system is the sum of all ratings of the libraries it contains,
divided by the square of the number of libraries.

The rationale behind this rating is as follows. We assume
that when a library is used frequently in different projects,
there must have been a reason to do so: a large number of
different project teams apparently considers it safe enough to
use and make a rational decision to prefer a certain library
over another. We expect that people are risk-averse in their
choice of third-party libraries, and that therefore people tend to
prefer safer libraries over less safer ones. We make use of the
collective judgment of these development teams in our rating.
We expect that our rating correlates with different kinds of
risks present in these libraries, but validation of this hypothesis
will not be performed in this paper. Section VII explains how
this could be tested experimentally.

We also assume that the more third-party library dependen-
cies a system has, the higher the exposure to risk in these
libraries becomes. Therefore we divide the average rating of
a system by the number of dependencies per system, thus
punishing a large number of third-party libraries.

Formally, the ratings are defined as follows. Let P be the
set of all systems under analysis and m be the size of P . Each
S 2 P uses a set LS of third-party libraries. The rating for a
given library L is given by R(L) which is defined as R(L) =
f(L)
m where f(L) is the frequency of use of L in all the systems

of P . The rating of a given system S (Commonality Rating)
is given by CR(S) which is defined as

CR(S) =

P|LS |
i=1 R(Li)

|LS |2

The ratings as calculated by these formulas are dimension-
less and always range from 0 to 1. When a system does not

apple

apple

apple

apple

apple

apple

have any third-party library dependencies, the rating is 1. Two
systems can be compared by their ratings, the system or library
with the highest rating is preferred.

D. Results

The top 10 of frequently used third-party libraries can be
found in Table II. A selection of open source systems with
ratings based on the number of imported libraries can be seen
in Table III. The first table shows the top 10 imports for the
Qualitas Corpus, the second table for our set of proprietary
systems.

Open source systems
Library name Description # %

1 org.apache.tools.ant Build tool 31 30.1%
2 org.apache.commons.logging Logging framework 29 28.2%
3 org.apache.log4j Logging framework 25 24.3%
4 org.apache.commons.collections Collection extensions 18 17.5%
5 org.apache.commons.httpclient HTTP client-side library 17 16.5%
6 org.apache.commons.lang SDK base class extensions 15 14.6%
7 org.apache.xml XML framework 15 14.6%
8 org.apache.commons.beanutils JavaBeans utility classes 14 13.6%
9 org.apache.commons.codec Encoder/decoder collection 14 13.6%
10 org.dom4j XML processing library 14 13.6%

Proprietary systems
Library name Description # %

1 org.apache.log4j Logging framework 80 45.0%
2 org.apache.commons.lang SDK base class extensions 68 38.2%
3 org.springframework Dependency injection 58 32.6%
4 org.hibernate Persistence framework 37 20.8%
5 org.apache.commons.beanutils JavaBeans utility classes 30 16.9%
6 org.apache.commons.collections Collection extensions 30 16.9%
7 org.apache.commons.logging Logging framework 29 16.3%
8 org.joda.time Date & time API 29 16.3%
9 org.apache.commons.io IO utility library 20 11.2%
10 org.apache.xmlbeans XML binding framework 20 11.2%

TABLE II
THE TOP 10 OF MOST IMPORTED THIRD-PARTY LIBRARIES

As can be seen in table II, there are slight dif-
ferences between the two datasets. In the case of the
Qualitas Corpus, the most frequently imported library is
org.apache.tools.ant, and for proprietary systems
org.apache.log4j. The Apache libraries are popular in
both datasets, occupying 15 out of 20 places in the list.

The Spring framework and Hibernate only appear in the top
10 of commercial systems and not in the top 10 of the Qualitas
Corpus. For the Spring framework, this is not surprising
since this framework is especially developed for industrial
systems. Table II also shows that 45.0% of proprietary systems
use the number one import org.apache.log4j, while
30.0% of open source systems use the number one import
org.apache.tools.ant. This is also true for most of the
other libraries in the top 10 of proprietary systems; apparently
there is more uniformity in used libraries in proprietary
systems than in open source systems.

The values of the rating formula of a selection of systems
from the Qualitas Corpus are shown in Table III. The number
in parentheses behind each library is the number of times that
library is used in the Qualitas Corpus. The number behind
each system (prefixed with a p) is the percentile of the score
of that system. For instance, only 2% of systems have a score

higher than Quilt (p98). This also means that our rating is not
distributed evenly from 0 to 1 but most systems have a value
lower than 0.5. The ratings of other systems in the Qualitas
Corpus can be found in the addendum.

System/Import Rating
ProGuard 4.5.1 0.2925 (p100)

org.apache.tools.ant 0.2925 (31)
Quilt 0.6 0.0967 (p98)

org.apache.bcel 0.0755 (8)
org.apache.tools.ant 0.3113 (31)

Pooka 3.0 0.0283 (p81)
org.htmlparser 0.0283 (3)

PicoContainer 2.10.2 0.0094 (p60)
com.thoughtworks.paranamer 0.0094 (1)

Art of Illusion 2.8.1 0.0019 (p10)
buoy.widget 0.0094 (1)
com.jstatcom.component 0.0094 (1)
net.sourceforge.helpgui 0.0094 (1)
nik777.xlate 0.0094 (1)
org.jibble.pircbot 0.0094 (1)

TABLE III
A SELECTION OF RATINGS FOR SYSTEMS FROM THE QUALITAS CORPUS

As can be seen in the table, ProGuard, a Java class
file shrinker and optimizer, has one third-party dependency,
namely org.apache.tools.ant. This library is imported
in 31 other systems in the Qualitas Corpus, and therefore this
system receives a rating of

31
106
12 = 0.2925. Art of Illusion,

a 3D modelling and ray tracing program, uses 5 relatively
uncommon libraries which are only imported in this system,
and therefore receives the lowest rating of the systems in this
table: 5⇤ 1

106
52 = 0.0019.

V. DISCUSSION

Our analysis shows that frequency of use and the number
of libraries used can give valuable insight in the usage of
third-party libraries in a system. The same analysis can be
performed by any organization which has disposal over a large
enough set of systems.

A. Meaning of rating

In this paper, we created a rating which rates more common
third-party libraries higher than less common ones, and sys-
tems with a large number of third-party dependencies get rated
lower than systems with less third-party dependencies. This is
based on the assumption that the more third-party libraries
a system includes, the more ‘exposed’ a system is to risks
present in these libraries. Risks that can be present in a third-
party library are, for instance, the crash of the system when
encountering a bug in a library, or the risk that the third-party
library is not maintained by its original maintainers any more
after which it may have to be replaced.

As explained before, our hypothesis is that commonly used
libraries are more ‘safe’ with regards to these risks. We expect
that the choice of a large group of people will reflect the
amount of different kinds of risk present in these libraries.
When there are two comparable libraries available and one is
considered to be more safe to use, we expect that this will be
reflected in the usage statistics of these libraries. For a possible
validation of this hypothesis, see section VII.

apple

apple

apple

apple

apple

B. Rare and useful

The approach described in this paper should considered
to be a start to the assessment of commonality of third-
party libraries, and should not be applied without contextual
interpretation. For instance, a library with a higher rating
is generally preferred over a library with a lower one, but
when a library performs a very specific task and there are no
alternatives, there is no choice but to use this library. This is
a contextual fact that has to be taken into account. Generally
speaking, it would be wise to prefer common libraries over
more uncommon ones, provided that they implement the same
functionality. To determine the predictive value of this rating,
additional validation is required.

C. Cascading dependencies

It is possible that a third-party library contains references
to other third-party libraries. We ignored these ‘cascading
dependencies’ in our analysis, but should ideally be included
since there is no difference between direct and indirect de-
pendencies from a technical viewpoint. We did not include
code of third party libraries and therefore import statements
in these libraries were not collected. Source code of these
libraries could also be included in future work to investigate
cascading third party library dependencies.

VI. THREATS TO VALIDITY

A. Internal validity

To gather data for our analysis, manual inspection is
required when reducing import statements to system-
level packages. This is not an error-free process, but
nevertheless necessary since we do not have another
way to distinguish between system-level, top-level and
sublevel packages (org.apache.maven.plugin
and org.apache.maven.model can be reduced
to org.apache.maven, but org.apache.maven

and org.apache.lucene cannot be reduced to
org.apache). A way to eliminate this threat would
be to automatically determine whether a dependency is third-
party by looking it up in a database of known third-party
libraries or to apply more advanced heuristics.

B. External validity

Our choice of including only Java systems in our analysis
has lead to a bias towards this language and may raise
questions about the external validity of our study. To increase
the external validity, the same experiment would have to be
repeated with systems in other languages, which is possible
for any language that supports importing packages or modules
in a source file.

VII. VALIDATION

To validate our hypothesis, the following experiment would
have to be performed. First, for each library and for each
specific risk, different indicators have to be collected, like the
number of open bugs in issue tracking systems or the number
of commits to the source code of the library. Systems need

to be ranked based on each of these risks, so that the system
with the highest risk is on the first place, and the system with
the lowest risk is on the last place. A ranking based on our
commonality rating also needs to be calculated. Each of these
rankings can be compared to the rank of our commonality
rating to see if there exists a correlation, for instance with
Kendell’s coefficient of concordance. If there turns out to be
a correlation with, for instance, the number of open bugs in
these libraries, then the commonality rating can be considered
an easy-to-measure ‘proxy’ indicator for this risk.

VIII. CONCLUSION

In this paper, we presented an easy to calculate rating for
the commonality of third-party libraries and the usage of these
libraries in software systems. The contributions of this paper
are:

1) An empirical study on the popularity of third-party li-
braries in open source and proprietary software systems;

2) A mechanism for rating libraries based on frequency of
use in open source and proprietary systems;

3) A mechanism for rating systems in terms of their de-
pendencies on (common or rare) third-party libraries;

4) A proposal for validation of our commonality rating as
an indicator for risks present in these libraries.

REFERENCES

[1] Software integrity risk report. Technical report, Forrester Consulting,
2011.

[2] M. T. Baldassarre, A. Bianchi, D. Caivano, and G. Visaggio. An
industrial case study on reuse oriented development. In Proceedings
of the 21st IEEE International Conference on Software Maintenance,
pages 283–292, Washington, DC, USA, 2005. IEEE Computer Society.

[3] M. A. S. Boxall and S. Araban. Interface metrics for reusability
analysis of components. In Proceedings of the 2004 Australian Software
Engineering Conference, ASWEC ’04, pages 40–51, Washington, DC,
USA, 2004. IEEE Computer Society.

[4] W. B. Frakes and K. Kang. Software reuse research: Status and future.
IEEE Trans. Softw. Eng., 31:529–536, July 2005.

[5] G. Gui and P. D. Scott. Ranking reusability of software components
using coupling metrics. J. Syst. Softw., 80:1450–1459, September 2007.

[6] R. Lämmel, E. Pek, and J. Starek. Large-scale, ast-based api-usage
analysis of open-source java projects. In Proceedings of the 2011 ACM
Symposium on Applied Computing, SAC ’11, pages 1317–1324, New
York, NY, USA, 2011. ACM.

[7] W. C. Lim. Effects of reuse on quality, productivity, and economics.
IEEE Softw., 11:23–30, September 1994.

[8] P. Mohagheghi and R. Conradi. Quality, productivity and economic
benefits of software reuse: a review of industrial studies. Empirical
Softw. Engg., 12:471–516, October 2007.

[9] M. Morisio, D. Romano, and I. Stamelos. Quality, productivity, and
learning in framework-based development: An exploratory case study.
IEEE Transactions on Software Engineering, 28:876–888, 2002.

[10] J. Sametinger. Software Engineering with Reusable Components.
Springer-Verlag, 1997.

[11] C. Szyperski. Component Software: Beyond Object-Oriented Program-
ming. Acm Press, 1997.

[12] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble. Qualitas corpus: A curated collection of java code for
empirical studies. In 2010 Asia Pacific Software Engineering Conference
(APSEC2010), Dec. 2010.

apple

apple

apple

apple

apple

apple

